Quantum electrodynamical shocks and solitons in astrophysical plasmas
نویسندگان
چکیده
The nonlinear propagation of low-frequency circularly polarized waves in a magnetized dusty plasma is analyzed. It is found that wave steepening and shock formation can take place due to the presence of nonlinear quantum vacuum effects, thus giving rise to ultra-intense electromagnetic shocks. Moreover, it is shown that solitary wave structures are admitted even under moderate astrophysical conditions. The results may have applications to astrophysical plasmas, as well as next generation laser interactions with laboratory plasmas containing dust clusters. PACS numbers: 52.27.Fp, 52.35.Mw, 52.38.-r, 52.40.Db
منابع مشابه
سالیتونهای متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفهای
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied by deriving the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...
متن کاملLarge amplitude dust ion acoustic solitons: considering dust polarity and nonextensive electrons
The characteristics of arbitrary amplitude dust ion acoustic solitary waves (DIASWs) are studied in unmagnetized dusty plasmas whose constituents are cold uid ions, nonextensive electrons and stationary negative/positive dust particles. The pseudopotential approach has been used to investigate the structure of localized waves. It is found that, solitary waves exist in a definite interval for th...
متن کاملCompressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملQuantum, Spin and Qed Effects in Plasmas
Plasmas are usually described using classical equations. While this is often a good approximation, where are situations when a quantum description is motivated. In this paper we will include several quantum effects, ranging from particle dispersion, which give raise to the so called Bohm potential, to spin effects, and to quantum electrodynamical effects. The later effects appears when the fiel...
متن کاملNonlinear collective effects in photon–photon and photon–plasma interactions
We consider strong-field effects in laboratory and astrophysical plasmas and high intensity laser and cavity systems, related to quantum electrodynamical (QED) photon–photon scattering. Current state-of-the-art laser facilities are close to reaching energy scales at which laboratory astrophysics will become possible. In such high energy density laboratory astrophysical systems, quantum electrod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005